REVISTA DIGITAL MINERIA 530 | Edición Noviembre 2021

MINERÍA la mejor puerta de acceso al sector minero MINERÍA / NOVIEMBRE 2021 / EDICIÓN 530 32 de geles C-S-H, C-A-H y C-S-A-H dentro de la matriz geopolimérico puede actuar como un nano-agregado permitiendo que el aglutinante resultante sea homogéneo y denso, lo que da como resultado una mejora de la resistencia mecánica final de los materiales producidos. Es así como la resistencia a la compresión final de los sistemas experimentales aditivados con las nanosoluciones de hidróxido de calcio aumentó entre un 44 y un 62% en comparación con los sistemas geopolímeros originales. Referencias [1] D. Jeon, Y. Jun, Y. Jeong, J. E. Oh, Microstructural and strength improvements through the use of Na2CO3 in a cement less Ca(OH)2 - Activated Class F fly ash system, Cement Concrete Research. 67 (2015) 2 1 5 - 2 2 5 . h t t ps ://do i . o r g/10.1016/ j . cemcon - res.2014.10.001 [2] M. Nawaz, A. Heitor, M. Sivakumar, Geopoly- mers in construction - Recent developments, Construction and B u i l - ding Materials. 260 ( 2 0 2 0 ) 120472. https://doi.org/10.1016/j.conbuildmat.2020.120472 [3] F. Demir, E.M. Derun, Modelling and optimization of gold mine tailings based geopolymer by us- ing response surface method and its application in Pb2+ removal, Journal of Cleaner Production. 237 (2019) 117766. https:// doi.org/10.1016/j.jclepro.2019.117766 [4] J. Kiventerä, H. Sreenivasan, Ch. Cheeseman, P. Kinnunen, M. Illikainen, Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime, Journal of Environmental Chemical Engineering. 6 (2018) 6530-6536. https://doi.org/10.1016/j. jece.2018.10.012 [5] M. Kamath, Sh. Prashant, M. Kumar, Microcharacterization of alkali activated paste with fly ash-GGBS-metakaolin binder system with ambient setting characteristics, Construction and Building Materials. 277 ( 2 0 2 1 ) 122323. https://doi.org/10.1016/j.conbuildmat.2021.122323 [6] S.S. Amritphale, P. Bhardwaj, R. Gupta, Advanced Geopolymerization Technology, in: M. Alshaaer, H-Y. Jeon (Eds.), Geopolymers and other Geosynthetics, London, IntechOpen, 2019, pp. 1-12. [7] F. Sanchez, K. Sobolev, Nanotechnology in concrete - A review, Construction and Building Materials. 24 (2010) 2 0 6 0 - 2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014 [8] A. Collins, Nanotechnology Cookbook: Practical, Reliable and Jargon-Free Experimental Procedures, first Ed., Elsevier Science, England, 2012. [9] H. Li, H-G. Xiao, J. Yuan, J. Ou, Microstructure of cement mortar with nano-particles, Composites Part B: Engineering. 352:(2) (2004) 185189. https://doi.org/10.1016/S13598368(03)00052-0 [10] K. Sobolev, I. Flores, R. Hermosillo, L.M. Torres-Martínez, Nanomaterials and nanotechnology for high-performance cement composites, Aci Materials Journal. 254 (2006) 93-120. [11] T. Ji, Preliminary study on the water permeabi- lity and microstructure of concrete incorporating nano-SiO2, Cement Concrete Research. 35:10 (2005) 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004 [12] J. Bjornstrom, A. Martinelli, A. Matic, L. Borjesson, I. Panas, Accelerating effects of colloidal Figura 11. Espectros de FTIR de los geopolímeros aditivados con nanosoluciones de hidróxido de calcio a pH 8.5.

RkJQdWJsaXNoZXIy MTM0Mzk2