REVISTA MINERÍA 537 | EDICIÓN JUNIO 2022

MINERÍA la mejor puerta de acceso al sector minero MINERÍA / JUNIO 2022 / EDICIÓN 537 28 tante cinética de flotación en casi un orden de magnitud, lo que resulta en una reducción del tamaño del circuito de flotación y del consumo de energía, así como recuperaciones metálicas y leyes de concentrado superiores. Bibliografía Bloom, F. and Heindel, T.J., 2003. “Modeling flotation separation in semi-batch process”, Chemical Engineering Science, Volumen 58, pp. 403-422. Dohm, E., Fayed, H., Van Wagoner, R., 2022. Metallurgical testing and CFD simulation of StackCell® SC-50, Minerals Eng., 181, 107517. Fayed, H.E., 2013. “Particles and Bubbles Collisions in Homogeneous Isotropic Turbulence and Applications to Minerals Flotation Machines”, Ph.D. Thesis, Virginia Polytechnic Institute and State University. Fayed, H.E. and Ragab, S.A., 2013. “Direct Numerical Simulation of Particles-Bubbles Collisions Kernel in Homogeneous Isotropic Turbulence”, Journal of Computational Multiphase Flows, Volumen 5, pp. 168-188. Flint, L.R. and Howarth, W.J., 1971. “Collision Efficiency of Small Particles with Spherical Air Bubbles”, Chemical Engineering Science, Volumen 26, pp. 1155. Fuerstenau, D.W., 1980. “Fine Particle Flotation,” in Fine Particle Processing, Vol. 1, P. Somasundaran, Ed., AIME, New York, NY, pp. 669. Gaudin, A., Grob, J., and Henderson, H., 1931. “Effect of Particle Size in Flotation”, Publicación técnica No 414 (AIME). Leipe, F. and Mockel, O.H., 1976. “Untersuchungen zum stoffvereinigen in ussiger phase”, Chemical Technology, Volume 30, pp. 205-209 (en Alemán). Luttrell, G.H., 1986. “Hydrodynamic Studies and Mathematical Modelling of Fine Coal Flotation”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University. Lynch, A.J., Johnson, N.W., Manlapig, E.V. and Thorne, C.G., 1981. “Mineral and Coal Flotation Circuits: Their Simulation and Control”, Elsevier Publishing, Amsterdam, 291 pp. Mankosa, M.J., Christodoulou, L., Yan, E.S., Kohmuench, J.N., and Luttrell, G.H., 2016. High-Intensity Sulfide Flotation using the Eriez StackCell™ Technology, Preprint 16-156, SME Annual Meeting, February 21–24, Phoenix, Arizona, pp. 4. Mankosa, M.J., Kohmuench, J.N., Christodoulou, L., and Yan, E.S., 2018. “Improving fine particle flotation using the StackCellTM (raising the tail of the elephant curve)”, Minerals Engineering, Volume 121, pp. 83-89. Mesa, D., Brito-Parada P.R., 2019. Scale-up in froth flotation: A state-of-the-art review, Separation and Purification Technology, 210, 650692 Tabosa, E., Runge, K., Holtham,P. 2016. The effect of cell hydrodynamics on flotation performance, Int. J. Miner. Process. 156, 99– 107, https://doi.org/10.1016/ Seaman, D.; Burns, F.; Adamson, B.; Seaman, B.; Manton, P. Telfer Processing Plant Upgrade–the Implementation of Additional Cleaning Capacity and the Regrinding of Copper and Pyrite Concentrates. In Proceedings of the 11th Mill Operators Conference, Hobart, Australia, 29–31 October 2012; pp. 373–381. Wasmund, E.B., Thanasekaran, T., and Yan, E.S., 2019. “A High-Rate Mechanical Flotation Cell for Base Metal Applications”, In Proceedings: 10th International Copper Conference, 58th Annual Conference of Metallurgists, Canadian Institute of Mining, Metallurgy and Petroleum. Figura 17. Contornos de la cámara de separación de ratios de disipación de turbulencia.

RkJQdWJsaXNoZXIy MTM0Mzk2