MINERÍA la mejor puerta de acceso al sector minero MINERÍA / MAYO 2023 / EDICIÓN 548 52 chine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts. Miner Eng 2007;20(12):1129–44. [12]Singh V, Rao SM. Application of image processing and radial basis neural network techniques for ore sorting and ore classification. Miner Eng 2005;18 (15):1412–20. [13]McCoy JT, Auret L. Machine learning applications in minerals processing: A review. Miner Eng 2019;132:95–109. [14]Pérez CA, Estévez PA, Vera PA, Castillo LE, Aravena CM, Schulz DA, Medina LE. Ore grade estimation by feature selection and voting using boundary detection in digital image analysis. Int J Miner Process 2011;101(1– 4):28–36. [15]Pérez CA, Saravia JA, Navarro CF, Schulz DA, Aravena CM, Galdames FJ. Rock lithological classification using multi-scale Gabor features from sub-images, and voting with rock contour information. Int J Miner Process 2015;144:56–64. [16]Chen JY, Huang HW, Cohn AG, Zhang DM, Zhou ML. Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning. Int J Min Sci Technol 2022;32(2):309–22. [17]Liu Y, Zhang ZL. Liu X, Wang L, Xia XH. Ore image classification based on small deep learning model: Evaluation and optimization of model depth, model structure and data size. Miner Eng 2021;172:107020. [18]Bai FY, Fan MQ, Yang HL, Dong LP. Fast recognition using convolutional neural network for the coal particle density range based on images captured under multiple light sources. Int J Min Sci Technol 2021;31(6):1053–61. [19]Andrearczyk V, Whelan PF. Using filter banks in convolutional neural networks for texture classification. Pattern Recognit Lett 2016;84:63–9. [20]Fujieda S, Takayama K, Hachisuka T. Wavelet convolutional neural networks for texture classification. 2017:arXiv: 1707.07394. [21]Wang QC, Zheng YJ, Yang GP, Jin WD, Chen XJ, Yin YL. Multiscale rotation-invariant convolutional neural networks for lung texture classification. IEEE J Biomed Health Inform 2018;22(1):184–95. [22]Corbett G. Epithermal gold for explorationists. AIG Journal 2002;67:1–8. [23]Sillitoe RH. Styles of high-sulphidation gold, silver and copper mineralisation in porphyry and epithermal environments. In: Proceedings of the Australasian Institute of Mining and Metallurgy. Parkville, Vic.: Australasian Institute of Mining and Metallurgy; 2000. p. 19–34. [24]Gibson HL, Watkinson DH, Comba CDA. Silicification; hydrothermal alteration in an Archean geothermal system within the Amulet Rhyolite Formation, Noranda. Quebec Econ Geol 1983;78(5):954–71. [25]Sony, Digital Still Camera-Instruction ManualDSC-HX90V/DSC-HX90/DSC-HX80/DSCWX500 (2015). URL. [26]GTI Graphic Technology, Inc., PDV-2e/M Multi-Source Portable Desktop Viewers (Dec. 2017). URL. [27]Rawat W, Wang ZH. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput 2017;29(9):2352–449. Figura 19. Recuperación y extracción de masa calculada en cada una de las 100 iteraciones de prueba, representadas por puntos azules. La estrella roja representa el valor medio de las 100 iteraciones, que es una recuperación del 95.6% y una extracción de masa del 77.4%.