REVISTA MINERÍA 561 | EDICIÓN JUNIO 2024

MINERÍA la mejor puerta de acceso al sector minero MINERÍA / JUNIO 2024 / EDICIÓN 561 28 gths in brittle loose deposited silts, in: Proceedings of the 8th International Symposium on Deformation Characteristics of Geomaterials. p. 8. Viana da Fonseca, A. 1996. Geomecânica dos solos residuais do granito do Porto: criterios para dimensionamento de fundações directas. Universidade do Porto. Viana da Fonseca, A., Cordeiro, D., Molina-Gómez, F. 2021a. Recommended Procedures to Assess Critical State Locus from Triaxial Tests in Cohesionless Remoulded Samples. Geotechnics 1, 95–127. https:// doi.org/10.3390/GEOTECHNICS1010006 Viana da Fonseca, A., Cordeiro, D., Molina-Gómez, F., Besenzon, D., Fonseca, A., Ferreira, C. 2022. The mechanics of iron tailings from laboratory tests on reconstituted samples collected in post-mortem Dam I in Brumadinho. Soils and Rocks 45, 1–20. https://doi. org/10.28927/SR.2022.001122 Viana da Fonseca, A., Ferreira, C., Fahey, M. 2009. A Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods. Geotech. Test. J. 32, 100974. https://doi. org/10.1520/GTJ100974 Viana da Fonseca, A., Ferreira, C., Soares, M., Klar, A. 2015a. Improved laboratory techniques for advanced geotechnical characterization towards matching in situ properties, in: Rinaldi, V.A., Zeballos, M.E., Clariá, J.J. (Eds.), Six International Symposium on Deformation Characteristics of Geomaterials. IOS Press, Buenos Aires, pp. 231–263. Viana da Fonseca, A., Molina-Gómez, F., Ferreira, C. 2023. Liquefaction resistance of TP-Lisbon sand: a critical state interpretation using in situ and laboratory testing. Bull. Earthq. Eng. 21, 767–790. https://doi. org/10.1007/s10518-022-01577-8 Viana da Fonseca, A., Pineda, J. 2017. Getting high- quality samples in ‘sensitive’ soils for advanced laboratory tests. Innov. Infrastruct. Solut. 2, 34. https://doi. org/10.1007/s41062-017-0086-3 Viana da Fonseca, A., Santos, J., Coelho, P. 2021b. 30 anos de progresso em 3 laboratórios de geotecnia de universidades portuguesas: caracterização de solos não plásticos. Geotecnia 143–185. https://doi. org/10.14195/2184-8394_152_5 Viana da Fonseca, A., Soares, M., Fourie, A.B. 2015b. Cyclic DSS tests for the evaluation of stress densification effects in liquefaction assessment. Soil Dyn. Earthq. Eng. 75, 98–111. https://doi.org/10.1016/J. SOILDYN.2015.03.016 Viggiani, G., Atkinson, J.H. 1995. Interpretation of bender element tests. Géotechnique 45, 149–154. https:// doi.org/10.1680/geot.1997.47.4.873 Wagner, A.C., de Sousa Silva, J.P., de Azambuja Carvalho, J.V., Cezar Rissoli, A.L., Cacciari, P.P., Chaves, H.M., Scheuermann Filho, H.C., Consoli, N.C. 2022. Mechanical behavior of iron ore tailings under standard compression and extension triaxial stress paths. J. Rock Mech. Geotech. Eng. https://doi.org/10.1016/j.jrmge.2022.11.013 Xu, L., Coop, M.R. 2017. The mechanics of a saturated silty loess with a transitional mode. Géotechnique 67, 581–596. https://doi.org/10.1680/jgeot.16.P.128 Yamashita, S., Kawaguchi, T., Nakata, Y., Mikamt, T., Fujiwara, T., Shibuya, S. 2009. Interpretation of international parallel test on the measurement of Gmax using bender elements. Soils Found. 49, 631– 650. https:// doi.org/10.3208/sandf.49.631 Yang, J., Luo, X.D. 2015. Exploring the relationship between critical state and particle shape for granular materials. J. Mech. Phys. Solids 84, 196–213. https:// doi.org/10.1016/j.jmps.2015.08.001 Yao, T., Baudet, B.A., Lourenço, S.D.N. 2021. Evolution of surface roughness of single sand grain with normal loading. Géotechnique 1–41. https:// doi.org/10.1680/jgeot.20.p.310 Zheng, J., Hryciw, R.D. 2015. Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Géotechnique 65, 494–506. https://doi.org/10.1680/geot.14.P.192 Figura 14. Resultados típicos de ensayos de corte simple cíclicos (datos de Viana da Fonseca et al. 2021).

RkJQdWJsaXNoZXIy MTM0Mzk2