MINERÍA la mejor puerta de acceso al sector minero EDICIÓN 577 / OCTUBRE 2025 76 Figura 17. Salud presión de descarga durante la Falla 4. Alharbi, F., Luo, S., Alsaedi, A., Zhao, S., & Yang, G. 2024. CASSAD: Chroma-Augmented Semi-Supervised Anomaly Detection for Conveyor Belt Idlers. Sensors, 24(23), 7569. Błażej, R., Jurdziak, L., & Rzeszowska, A. 2025. Sensor-Based Diagnostics for Conveyor Belt Condition Monitoring and Predictive Refurbishment. Sensors, 25(11), 3459. Bortnowski, P., Gondek, H., Król, R., Marasova, D., & Ozdoba, M. 2023. Detection of Blockages of the Belt Conveyor Transfer Point Using an RGB Camera and CNN Autoencoder. Energies, 16(4), 1666. Jiang, L., Xu, H., Liu, J., Shen, X., Lu, S., & Shi, Z. 2022. Anomaly detection of industrial multi-sensor signals based on enhanced spatiotemporal features. Anomaly detection of industrial multi-sensor signals based on enhanced spatiotemporal features, 34, 8465-8477. Mahmood, M. S., & Shareef, I. R. 2024. Applications of Artificial Intelligence for Smart Conveyor Belt Monitoring Systems: A Comprehensive Review. Journal Europeen des Systemes Automatises, 1195-1206. Pota, M., De Pietro, G., & Esposito, M. 2023. Real-time anomaly detection on time series of industrial furnaces: A comparison of autoencoder architectures. Engineering Applications of Artificial Intelligence, 124, 106597. Shang, W., Qiu, J., Shi, H., Wang, S., Ding, L., & Xiao, Y. 2024. An Efficient Anomaly Detection Method for Industrial Control Systems: Deep Convolutional Autoencoding Transformer. International Journal of Intelligent Systems, 5459452. Song, Y., Wang, W., Wu, Y., Fan, Y., & Zhao, X. 2024. Unsupervised anomaly detection in shearers via autoencoder networks and multi-scale correlation matrix reconstruction. International Journal of Coal Science & Technology, 11(1), 79. Tang, T.-W., Hsu, H., & Li, K.-M. 2023. Industrial anomaly detection with multiscale autoencoder and deep feature extractor-based neural network. IET Image Processing, 17(6), 1752-1761. Tang, T.-W., Hsu, H., Huang, W.-R., & Li, K.- M. 2022. Industrial Anomaly Detection with Skip Autoencoder and Deep Feature Extractor. Sensors, 22(23), 9327. Tziolas, T., Papageorgiou, K., Theodosiou, T., Papageorgiou, E., Mastos, T., & Papadopoulos, A. 2022. Autoencoders for Anomaly Detection in an Industrial Multivariate Time Series Dataset. Engineering Proceedings, 18(1), 23.
RkJQdWJsaXNoZXIy MTM0Mzk2