REVISTA MINERÍA 559 | EDICIÓN ABRIL 2024

MINERÍA la mejor puerta de acceso al sector minero MINERÍA / ABRIL 2024 / EDICIÓN 559 45 Figura 21. Monitoreo de nube de puntos y cámara a través de la malla inalámbrica. ning vehicle", in IEEE Transactions on Robotics and Automation, vol. 15, N°. 1, pp. 85-95, Feb. 1999. [10] R. Madhavan, M. W. M. G. Dissanayake and H. F. Durrant-Whyte, "Autonomous underground navigation of an LHD using a combined ICP-EKF approach", Proceedings. 1998 IEEE International Conference on Robotics and Automation. [11] J. C. Ralston, C. O. Hargrave and D. W. Hainsworth, "Localisation of mobile underground mining equipment using wireless Ethernet", Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005. [12] D. J. Yoon, H. Zhang, M. Gridseth, H. Thomas and T. D. Barfoot, "Unsupervised Learning of Lidar Features for Use in a Probabilistic Trajectory Estimator," in IEEE Robotics and Automation Letters, vol. 6, N°. 2, April 2021. [13] U. Artan, J. Marshall, and N. Lavigne, “Robotic mapping of underground mine passageways”, 2011, Mining Technology, vol. 120, pp. 18 - 24, Nov. 2013. [14] D. Barnes and I. Posner, "Under the Radar: Learning to Predict Robust Keypoints for Odometry Estimation and Metric Localisation in Radar," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020. [15] D. Barnes, M. Gadd, P. Murcutt, P. Newman and I. Posner, "The Oxford Radar RobotCar Dataset: A Radar Extension to the Oxford RobotCar Dataset," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020. [16] K. Burnett, A. P. Schoellig and T. D. Barfoot, "Do We Need to Compensate for Motion Distortion and Doppler Effects in Spinning Radar Navigation?" in IEEE Robotics and Automation Letters, vol. 6, N°. 2, April 2021. [17] R. Winkel, C. Augustin, and K. Nienhaus, “2d Radar Technology Increasing Productivity by Volumetric Control and Hopper Car Positioning in Brown Coal Mining”, 2011. [18] T. Neumann, E. Dülberg, S. Schiffer, A. Ferrein, “A Rotating Platform for Swift Acquisition of Dense 3D Point Clouds”, in Intelligent Robotics and Applications (ICIRA 2016). Lecture Notes in Computer Science, vol 9834. [19] M. Palieri et al., "Locus: A Multi-Sensor Lidar- Centric Solution for High-Precision Odometry and 3D Mapping in Real-Time", in IEEE Robotics and Automation Letters, vol. 6, N°. 2, April 2021. [20] Y. Shin and A. Kim, "Sparse Depth Enhanced Direct Thermal-Infrared SLAM Beyond the Visible Spectrum", in IEEE Robotics and Automation Letters, vol. 4, N°. 3, July 2019. [21] J. G. Rogers, J. M. Gregory, J. Fink and E. Stump, "Test Your SLAM! The SubT-Tunnel dataset and metric for mapping", 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020. [22] K. Shankar, and N. Michael, “MRFMap: Online Probabilistic 3D Mapping using Forward Ray Sensor Models”, 2020. [23] W. Tabib, C. O’Meadhra and N. Michael, "On- Manifold GMM Registration", in IEEE Robotics and Automation Letters, vol. 3, N°. 4, Oct. 2018. [24] M. Corah, and N. Michael, “Volumetric Objectives for Multi-Robot Exploration of Three-Dimensional Environments”, 2021. [25] Siegwart, R., Nourbakhsh, I.R. and Scaramuzza, D. (2011) Introduction to autonomous mobile robots. Cambridge, MA: MIT.

RkJQdWJsaXNoZXIy MTM0Mzk2