REVISTA DIGITAL MINERIA 530 | Edición Noviembre 2021

MINERÍA la mejor puerta de acceso al sector minero MINERÍA / NOVIEMBRE 2021 / EDICIÓN 530 36 change resin, Advances in Nanoparticles. 4 (2015) 17-24. https://doi.org/10.4236/ anp.2015.42003 [43] H. H. Paradles, Shape and size of a nonionic surfactant micelle. Triton X-100 in aqueous solution, Journal of Physical Chemistry. 84 (1980) 599-607. https://doi.org/10.1021/ j100443a008 [44] E.M. Opiso, C.B. Tabelin, Ch.V. Maestre, J.P.J. Aseniero, I. Park, M. Villacorte-Tabelin, Synthesis and characterization of coal fly ash and palm oil fuel ash modified artisanal and small-scale gold mine (ASGM) tailings based geopolymer using sugar mill lime sludge as Ca-based activator, Heliyon 7, (2021) e06654. https:// doi.org/10.1016/j.heliyon.2021.e06654 [45] A. Michalopoulou, P.N. Maravelaki, V. Kili- koglou, I. Karatasios, Morphological characteriza- tion of water-based nanolime dispersions, Journal of Cultural Heritage. 46 (2020) 11-20. https://doi.org/10.1016/j.culher.2020.06.005 [46] B. Yuan, Q.L. Yu, H.J.H. Brouwers, Assessing the chemical involvement of limestone powder in sodium carbonate activated slag, Materials and Structures. 50:136 (2017) 1-14. https://doi.org/10.1617/s11527-0171003-0 [47] C.K. Yip, G.C. Lukey, J.S.J. Van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activa tion, Cement Concrete Research. 35 (2005) 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042 [48] K. J. D. MacKenzie, M. E. Smith, A. Wong, A multinuclear MAS NMR study of calcium- containing aluminosilicate inorganic polymers, Journal of Materials Chemistry. 17 (2007) 5090- 5096. https://doi.org/10.1039/ B712922J [49] B. Akturk, A.B. Kizilkanat, N. Kabay, Effect of calcium hydroxide on fresh state behavior of so- dium carbonate activated blast furnace slag pastes, Construction and Building Materials. 21:2 (2019) 388-399. https://doi.org/10.1016/j.conbuildmat.2019.03.328 [50] A. Silva de Vargas, D.C.C. Dal Molin, Â.B. Masuero, A.C.F. Vilela, J. Castro-Gomes, R.M. de Gutierrez, Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators, Cement and Concrete Composites. 53 (2014) 341 - 349. https://doi.org/10.1016/j.cemconcomp.2014.06.012 [51] J.N.Y. Djobo, H.K. Tchakouté, N. Ranjbar, A. Elimbi, L.N. Tchadjie, D. Njopwouo, Gel composi- tion and strength properties of alkali-activated oyster shell-volcanic ash: Effect of synthesis conditions, Journal of American Ceramics Society. 99 (2016) 3159-3166. https://doi. org/10.1111/jace.14332 [52] N. Zhang, A. Hedayat, H. G. B. Sosa, J. Tun- nah, J. J. G. Cárdenas, G. E. S. Álvarez, Estimation of the mode I fracture toughness and evaluations on the strain behaviors of the compacted mine tailings from full-field displacement fields via digital image correlation, Theoretical and Applied Fracture Me- chanics, 114, (2021) 103014. https:// doi.org/10.1016/j.tafmec.2021.103014 [53] N. Zhang, A. Hedayat, H.G. Bolaños Sosa, J.J. González Cárdenas, G.E. Salas Álvarez, V. Ascuña Rivera, J. González, Fracture and Tabla 2. Análisis Químico Semicuantitativo por EDS de los Geopolímeros Sintetizados Elemento Composición Química [wt%] Original GP. GP. + 1% Nano GP. + 2% Nano GP. + 3% Nano O 36.87 37.89 37.41 39.05 Na 9.23 8.45 8.02 8.05 Mg 0.98 0.83 1.16 1.40 Al 6.76 6.51 6.83 7.53 Si 36.30 37.65 37.12 34.09 K 1.88 1.42 1.56 1.78 Ca 1.48 1.87 2.13 2.37 Fe 6.60 5.37 5.79 5.74

RkJQdWJsaXNoZXIy MTM0Mzk2