REVISTA MINERÍA 540 | EDICIÓN SEPTIEMBRE 2022

MINERÍA la mejor puerta de acceso al sector minero MINERÍA / SEPTIEMBRE 2022 / EDICIÓN 540 83 support on the footwall side to increase the safety of an operation, and the implementation of preventive measures on the hanging wall side to enhance its profitability. Acknowledgements The author acknowledges Prof. Hani Mitri from the Department of Mining and Materials Engineering at McGill University for the use of a FLAC3D license v. 4.00 in this study and is grateful for its availabil- ity. References Arjang, B. & Herget, G. 1997. In situ ground stresses in the Canadian hardrock mines: an update. Int. J. Rock Mech. Min. Sci. 34(15):1-16. Beck, D.A. & Sandy, M.P. 2003. Mine sequencing for high re- covery in Western Australian mines. In Proc. 12th int. symp. mine plan. equip. select., 23-25 April 2003, Kalgoorlie. Bewick, R.P. 2013. Shear rupture of massive brittle rock under constant normal stress and stiffness boundary conditions. Ph.D. thesis. University of Toronto, Toronto, 363 p. Board, M., Brummer, R., & Seldon, S. 2001. Use of numerical modeling for mine design and evaluation. In W.A. Hustru- lid & R.L. Bullock (eds). Underground mining methods: Engineering Fundamentals and international case studies: 483-491. Littleton: SME. Bouzeran, L., Pierce, M., Jalbout, A., & Ruest, M. 2019. Stop- ing sequence optimisation at Eleonore Mine based on stress analysis through horizon scale numerical modelling. In W. Joughin (ed.), Proc. Deep Mining, ninth int. conf. deep and high stress mining, Bibliografía Arjang, B. & Herget, G. 1997. In situ ground stresses in the Canadian hardrock mines: an update. Int. J. Rock Mech. Min. Sci. 34(15):1-16. Beck, D.A. & Sandy, M.P. 2003. Mine sequencing for high recovery in Western Australian mines. In Proc. 12th int. symp. mine plan. equip. select., 23-25 April 2003, Kalgoorlie. Bewick, R.P. 2013. Shear rupture of massive brittle rock under constant normal stress and stiffness boundary conditions. Ph.D. thesis. University of Toronto, Toronto, 363 p. Board, M., Brummer, R., & Seldon, S. 2001. Use of numerical modeling for mine design and evaluation. In W.A. Hustrulid & R.L. Bullock (eds). Underground mining methods: Engineering Fundamentals and international case studies: 483-491. Littleton: SME. Bouzeran, L., Pierce, M., Jalbout, A., & Ruest, M. 2019. Stoping sequence optimisation at Eleonore Mine based on stress analysis through horizon scale numerical modelling. In W. Joughin (ed.), Proc. Deep Mining, ninth int. conf. deep and high stress mining, 24-25 June, Johannesburg. Brown, E.T. & Hoek, E. 1978. Trends in relationships between measured in-situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abst. 15(4):211-215. Castro, L.A.M., Bewick, R.P., & Carter, T.G. 2012. An overview of numerical modelling applied to deep mining. In R. Azevedo (ed.). Innovative numerical modelling in geomechanics. London: CRC Press. Cepuritis, P.M. & Villaescusa, E. 2006. Back analysis techniques for assessing open stope performance. In Austr. Min. Tech. Conf. Tabla 7. Volumen Acumulado del Piso en Riesgo para la Secuencia de Pilares 1-4-7 (m3) desde L1580 hasta L1430 Etapa Piso (m3) Techo (m3) Dim 1-4-7 1-5-9 Dim 1-4-7 1-5-9 0 0 0 0 0 0 0 2 129 329 83 2 284 364 4 463 822 843 298 755 1422 6 1585 1483 1196 1679 1551 1623 8 1615 1618 971 2191 1099 709 10 2590 2044 1576 3358 733 865 12 2846 2365 1908 3679 1118 1757 14 3273 3300 2747 4165 2362 2599 16 3659 4929 3655 4872 3043 3706 18 3937 5004 3878 5224 3744 4289 20 3723 5317 4781 6232 5021 5652 22 5511 5837 5319 7034 5812 6501 2_4 5795 5709 5772 7805 7705 7706

RkJQdWJsaXNoZXIy MTM0Mzk2